科技队伍Technology Team

当前的位置:首页> 科技队伍>成娟

计算数学教研室--成娟

成娟

计算数学教研室,博士生导师

联系方式:010-

电子邮箱:cheng_juan@iapcm.ac.cn

导师个人简介
从事专业

计算数学

教育经历

1989,南京大学,数学系,学士

2001,南京航空航天大学,空气动力学系,博士

工作经历

1992 - 2003: 南京航空航天大学,空气动力学系,助教/讲师/副教授

2004 - 至今: 北京应用物理与计算数学研究所,副研究员/研究员

研究方向简介

偏微分方程数值解

计算流体力学

个人荣誉、所获奖项等

1、“Journal of Computational Physics” 杂志编委,2014-至今

2、“计算数学”杂志编委,2014-至今

3、北京计算数学学会副理事长,2017-至今

4、"跨音速欧拉方程高效并行算法及应用研究",中国航空工业总公司科技进步二等奖,排名:3,1997

5、“辐射流体力学高精度健壮数值方法研究”,中国工程物理院科技创新奖,二等奖,排名:1,2015

代表性研究成果列表(请按照参考文献引用格式提供详细信息)

1.D. Ling, J. Cheng, et al., Positivity-preserving and symmetry-preserving Lagrangian schemes for compressible Euler equations in cylindrical coordinates, Computers & Fluids, 157, 112–130, 2017.

2.D. Yuan, J. Cheng, et al., High order positivity-preserving discontinuous Galerkin methods for radiative transfer equations, SIAM Journal of Scientific Computing, 38(5), A2987-A3019, 2016.

3.J. Cheng, et al., Second order symmetry-preserving conservative Lagrangian scheme for compressible Euler equations in two-dimensional cylindrical coordinates, Journal of Computational Physics, 272, 245-265, 2014.

4.J. Cheng, et al., Positivity-preserving Lagrangian scheme for multi-material compressible flow, Journal of Computational Physics, 257, 143-168, 2014.

5.J. Cheng, et al., A conservative Lagrangian scheme for solving compressible fluid flows with multiple internal energy equations, Communications in Computational Physics, 12, 1307-1328, 2012.

6.J. Cheng, et al., Improvement on Spherical Symmetry in Two-Dimensional Cylindrical Coordinates for a Class of Control Volume Lagrangian Schemes, Communications in Computational Physics, 11(4) , 1144-1168, 2012.

7.J. Cheng, et al., A cell-centered Lagrangian scheme with the preservation of symmetry and conservation properties for compressible fluid flows in two-dimensional cylindrical geometry, Journal of Computational Physics, 229, 7191-7206, 2010.

8.J. Cheng, et al., A third order conservative Lagrangian type scheme on curvilinear meshes for the compressible Euler equations, Communications in Computational Physics, 4, 1008-1024, 2008.

9.J. Cheng, et al., A high order accurate conservative remapping method on staggered meshes, Applied Numerical Mathematics, 58, 1042-1060, 2008.

10.J. Cheng, et al., A high order ENO conservative Lagrangian type scheme for the compressible Euler equations, Journal of Computational Physics, 227, 1567-1596, 2007.