姓名:盛志强
座机:010-61935170
邮箱:sheng_zhiqiang@iapcm.ac.cn
职称:研究员
导师资格:博导
导师简介:
盛志强,男,北京应用物理与计算数学研究所研究员,博士生导师。2007年6月毕业于中国工程物理研究院研究生部,获博士学位。毕业后进入北京应用物理与计算数学研究所计算物理实验室工作,2008-2010年在法国巴黎第六大学做博士后研究。主要从事辐射流体力学计算方法研究及程序研制工作。已出版专著1本,发表SCI论文60余篇。曾获中国工程物理研究院首届科技创新奖一等奖。现为邓稼先创新研究中心复杂流体数值模拟研究团队负责人,中国数学会理事,中国工业与应用数学学会副秘书长,《计算数学》杂志编委。
研究方向简介:
主要针对国家重大需求数值模拟中存在的问题开展计算方法研究,包括有限体积方法和机器学习方法等,解决现有计算方法在健壮性、守恒性、极值性、计算精度以及效率等方面的关键难点问题。
主要研究成果:
专著:
1. 袁光伟,盛志强,杭旭登,姚彦忠,常利娜,岳晶岩,扩散方程计算方法,科学出版社,2015.
论文:
1.Z. Xu, Z. Sheng*, Subspace method based on neural networks for solving the partial differential equation, arXiv:2404.08223.
2.P. Liu, Z. Xu, Z. Sheng*, Subspace method based on neural networks for solving the partial differential equation in weak form, arXiv:2405.08513.
3.H. Zhou, Z. Sheng*, Improved randomized neural network methods with boundary processing for solving elliptic equations, Commun. Comput. Phys., 2025.
4.H. Tian, X. Wang, Z. Sheng*, A maximum principle preserving meshfree method for anisotropic diffusion equations, J. Comput. Phy. 518(2024)113346.
5.W. Kong, Z. Hong, G. Yuan, Z. Sheng*, Monotonicity corrections for nine-point scheme of diffusion equations, J. Comput. Math., 42(2024) 1305-1327.
6.Z. Sheng, G. Yuan, A nonlinear scheme preserving maximum principle for heterogeneous anisotropic diffusion equation, J. Comput. Appl. Math., 436 (2024) 115438
7.H. Zhou, Y. Liu, Z. Sheng*, A finite volume scheme preserving the invariant region property for a class of semilinear parabolic equations on distorted meshes, Numer. Meth. Part. Diff. Equ., 39(2023)4270-4294.
8.Z. Sheng, G. Yuan, Analysis of nonlinear scheme preserving maximum principle for anisotropic diffusion equation on distorted meshes, Sci. China Math., 65(2022)2379-2396.
9.J. Wang, Z. Sheng, G. Yuan, A vertex-centered finite volume scheme preserving the discrete maximum principle for anisotropic and discontinuous diffusion equations, J. Comput. Appl. Math., 402 (2022) 113785.
10.J. Wang, Z. Sheng, G. Yuan, A finite volume scheme preserving maximum principle with cell-centered and vertex unknowns for diffusion equations on distorted meshes, Appl. Math. Comput., 398 (2021) 125989.
11.H. Zhou, Z. Sheng, G. Yuan, A Conservative Gradient Discretization Method for Parabolic Equations, Adv. Appl. Math. Mech., 13(2021)232-260.
12.Z. Sheng, G. Yuan, J. Yue, A nonlinear convex combination in the construction of finite volume scheme satisfying maximum principle, Appl. Numer. Math., 156 (2020) 125-139.
13.H. Zhou, Z. Sheng, G. Yuan, A finite volume method preserving maximum principle for the diffusion equations with imperfect interface, Appl. Numer. Math., 158(2020)314-335.
14.L. Chang, Z. Sheng, G. Yuan, An improvement of the two-point flux approximation scheme on polygonal meshes, J. Comput. Phy. 392 (2019) 187-204.
15.D. Jia, Z. Sheng, G. Yuan,An extremum-preserving iterative procedure for the imperfect interface problem, Commun. Comput. Phys. 25 (2019) 853-870.
16.B. Lan, Z. Sheng, G. Yuan, A new positive finite volume scheme for two-dimensional convection-diffusion equation, Z Angew Math Mech. 2019;99:e201800067.
17.H. Zhou, Z. Sheng, G. Yuan, Physical-bound-preserving finite volume methods for the Nagumo equation on distorted meshes, Comput. Math. Appl., 77 (2019) 1055–1070.
18.贾东旭, 盛志强, 袁光伟, 扩散方程一种无条件稳定的保正并行有限差分方法,计算数学, 41(2019)242-258.
19.张燕美,兰斌,盛志强,袁光伟,非定常对流扩散方程保正格式解的存在性, 计算数学, 41(2019)381-394.
20.Z. Sheng, G. Yuan, Construction of nonlinear weighted method for finite volume schemes preserving maximum principle, SIAM J. Sci. Comput. 40 (2018) A607-A628.
21.H. Zhou, Z. Sheng, G. Yuan, Positivity preserving finite volume scheme for the Nagumo-type equations on distorted meshes, Appl. Math. Comput., 336 (2018) 182-192.
22.D. Jia, Z. Sheng, G. Yuan, A conservative parallel difference method for 2-dimension diffusion equation, Appl. Math. Lett. 78 (2018) 72-78.
23.B. Lan, Z. Sheng, G. Yuan, A new finite volume scheme preserving positive for radionuclide transport calculations in radioactive waste repository. Int. J. Heat and Mass Transfer. 121(2018) 736-746.
24.B. Lan, Z. Sheng, G. Yuan, A monotone finite volume scheme with second order accuracy for convection-diffusion equations on deformed meshes. Commun. Comput. Phys. 24(2018)1455-1476.
25.Z. Sheng, J. Yue, G. Yuan, A Parallel Finite Volume Scheme Preserving Positivity for Diffusion Equation on Distorted Meshes, Numer. Meth. Part. Diff. Equ., 33 (2017)2159-2178.
26.Q. Zhang, Z. Sheng, G. Yuan, A monotone finite volume scheme for diffusion equations on general non-conforming meshes, Appl. Math. Comput., 311(2017)300-313.
27.Q. Zhang, Z. Sheng, G. Yuan, A finite volume scheme preserving extremum principle for convection-diffusion equations on polygonal meshes, Int. J. Numer. Meth. Fluids, 84(2017)616-632.
28.Z. Sheng, G. Yuan, A Cell-Centered Nonlinear Finite Volume Scheme Preserving Fully Positivity for Diffusion Equation, J. Sci. Comput., 2016, 68, 521-545.
29.Z. Sheng, G. Yuan, A new nonlinear finite volume scheme preserving positivity for diffusion equations, J. Comput. Phys., 2016, 315, 182-193.
30.Z. Sheng, M. Thiriet, F. Hecht, A high-order scheme for the incompressible Navier–Stokes equations with open boundary condition,Int. J. Numer. Meth. Fluids, 2013,73(1):58-73.
31.袁光伟, 岳晶岩, 盛志强, 沈隆钧, 非线性抛物型方程计算方法, 中国科学: 数学, 2013, 43(3)235-248.
32.Z. Sheng, G. Yuan, An improved monotone finite volume scheme for diffusion equation on polygonal meshes, J. Comput. Phys., 231(2012)3739-3754.
33.袁光伟,盛志强,岳晶岩,扩散方程保正的有限体积格式,中国科学:数学, 42(9), 2012, 951-970.
34.Z. Sheng, G. Yuan, The finite volume scheme preserving extremum principle for diffusion equations on polygonal meshes, J. Comput. Phys., 230(2011) 2588-2604.
35.Z. Sheng, M. Thiriet, F. Hecht, An efficient numerical method for the equations of steady and unsteady flows of homogeneous incompressible Newtonian fluid, J. Comput. Phys., 230(2011) 551-571.
36.Z. Sheng, J. Yue, G. Yuan, Monotone finite volume schemes of nonequilibrium radiation diffusion equations on distorted meshes. SIAM J. Sci. Comput. 31 (2009), no. 4, 2915--2934.
37.袁光伟, 杭旭登, 盛志强,岳晶岩,辐射扩散计算方法若干研究进展. 计算物理,26 (2009), no.4.475-500.
38.Z. Sheng, G. Yuan, A finite volume scheme for diffusion equations on distorted quadrilateral meshes. Transport Theory Statist. Phys. 37 (2008), no. 2-4, 171--207.
39.G. Yuan, Z. Sheng, Calculating the vertex unknowns of nine point scheme on quadrilateral meshes for diffusion equation, Sci. China Ser. A 51 (2008), no. 8, 1522--1536.
40.G. Yuan, Z. Sheng, Monotone finite volume schemes for diffusion equations on polygonal meshes. J. Comput. Phys. 227 (2008), no. 12, 6288--6312.
41.Z. Sheng, G. Yuan, A nine point scheme for the approximation of diffusion operators on distorted quadrilateral meshes. SIAM J. Sci. Comput. 30 (2008), no. 3, 1341--1361.
42.G. Yuan, Z. Sheng, Analysis of accuracy of a finite volume scheme for diffusion equations on distorted meshes. J. Comput. Phys. 224 (2007), no. 2, 1170--1189.
43.G. Yuan, X. Hang, Z. Sheng, Parallel Difference Schemes with Interface Extrapolation Terms for Quasi-linear Parabolic Systems. Science in China: Series A Mathematics, 50(2007), 253-275.
44.G. Yuan, Z. Sheng, X. Hang, The Unconditional Stability of Parallel Difference Schemes with Second Order Convergence for Nonlinear Parabolic System. J. Partial Diff. Eqs. 20(2007), 45-64.
45.Z. Sheng, G. Yuan, X. Hang, Unconditional Stability of Parallel Difference Schemes with Second Order Accuracy for Parabolic Equation. Appl. Math. Comput., 184(2007), 1015-1031.