科技队伍Technology Team

当前的位置:首页> 科技队伍>盛志强

计算数学教研室--盛志强

计算数学教研室-盛志强

所在单位:北京应用物理与计算数学研究所

导师职称:研究员,博导

电子邮箱:sheng_zhiqiang@iapcm.ac.cn

招生专业:计算数学

研究方向:偏微分方程数值解




一、教育经历

2002.9-2007.7   中物院研究生部计算数学研究生/理学博士

1998.9-2002.7   湘潭大学数学与应用数学大学本科/理学学士

 

二、工作经历

2010.11至今   北京应用物理与计算数学研究所助理研究员/副研究员/研究员

2008.11-2010.10 法国巴黎第六大学博士后

2007.7-2008.10  北京应用物理与计算数学研究所助理研究员

 

三、研究方向及简介

偏微分方程数值解主要研究偏微分方程的数值计算方法及其基础理论,包括离散格式的构造以及对离散解的收敛性、稳定性等基本性质的分析。

 

四、个人荣誉、所获奖项

中国工程物理研究院科技创新奖一等奖,2015年。

 

五、代表性论文及成果

专著:1. 袁光伟,盛志强,杭旭登,姚彦忠,常利娜,岳晶岩,扩散方程计算方法,科学出版社,2015.

 

论文:

1. J. Wang, Z. Sheng, G. Yuan, A finite volume scheme preserving maximum principle with cell-centered and vertex unknowns for diffusion equations on distorted meshes, Appl. Math. Comput., 398 (2021) 125989.

2. Y. Gao, Y. Li, G. Yuan, Z. Sheng, New finite volume element methods in the ALE framework for time-dependent convection–diffusion problems in moving domains, J. Comput. Appl. Math., 393 (2021) 113537.

3. H. Zhou, Z. Sheng, G. Yuan, A Conservative Gradient Discretization Method for Parabolic Equations, Adv. Appl. Math. Mech., 13(2021)232-260.

4. Z. Sheng, G. Yuan, J. Yue, A nonlinear convex combination in the construction of finite volume scheme satisfying maximum principle, Appl. Numer. Math., 156 (2020) 125-139.

5. Y. Yu, G. Yuan, Z. Sheng, Y. Li, The finite volume scheme preserving maximum principle for diffusion equations with discontinuous coefficient, Comput. Math. Appl., 79(2020) 2168-2188.

6. H. Zhou, Z. Sheng, G. Yuan, A finite volume method preserving maximum principle for the diffusion equations with imperfect interface, Appl. Numer. Math., 158(2020)314-335.

7. F. Zhao, X. Lai, G. Yuan, Z. Sheng, A new interpolation for auxiliary unknowns of the monotone finite volume scheme for 3D diffusion equations, Commun. Comput. Phys., 27 (2020)1201-1233.

8. L. Chang, Z. Sheng, G. Yuan, An improvement of the two-point flux approximation scheme on polygonal meshes, J. Comput. Phy. 392 (2019) 187-204.

9. X. Yang, H. Zhang, Q. Zhang, G. Yuan, Z. Sheng, The finite volume scheme preserving maximum principle for two-dimensional time-fractional Fokker–Planck equations on distorted meshes, Appl. Math. Lett. 97 (2019) 99-106.

10. D. Jia, Z. Sheng, G. Yuan,An extremum-preserving iterative procedure for the imperfect interface problem, Commun. Comput. Phys. 25 (2019) 853-870.

11. B. Lan, Z. Sheng, G. Yuan, A new positive finite volume scheme for two-dimensional convection-diffusion equation, Z Angew Math Mech. 2019;99:e201800067.

12. H. Zhou, Z. Sheng, G. Yuan, Physical-bound-preserving finite volume methods for the Nagumo equation on distorted meshes, Comput. Math. Appl., 77 (2019) 1055–1070.

13. Y. Du, Y. Li, Z. Sheng, Quadratic finite volume method for a nonlinear elliptic problem, Adv. Appl. Math. Mech., 11 (2019) 838-869.

14. 贾东旭,盛志强,袁光伟,扩散方程一种无条件稳定的保正并行有限差分方法,计算数学,41(2019)242-258.

15. 张燕美,兰斌,盛志强,袁光伟,非定常对流扩散方程保正格式解的存在性,计算数学,41(2019)381-394.

16. Z. Sheng, G. Yuan, Construction of nonlinear weighted method for finite volume schemes preserving maximum principle, SIAM J. Sci. Comput.  40 (2018) A607-A628.

17. F. Cao, Z. Sheng, G. Yuan, Monotone finite volume schemes for diffusion equation with imperfect interface on distorted meshes,J. Sci. Comput., 76 (2018) 1055-1077.

18. H. Zhou, Z. Sheng, G. Yuan, Positivity preserving finite volume scheme for the Nagumo-type equations on distorted meshes, Appl. Math. Comput., 336 (2018) 182-192.

19. D. Jia, Z. Sheng, G. Yuan, A conservative parallel difference method for 2-dimension diffusion equation, Appl. Math. Lett. 78 (2018) 72-78.

20. B. Lan, Z. Sheng, G. Yuan, A new finite volume scheme preserving positive for radionuclide transport calculations in radioactive waste repository. Int. J. Heat and Mass Transfer.  121(2018) 736-746.

21. X. Yang, Q. Zhang, G. Yuan, Z. Sheng, On positivity preservation in nonlinear finite volume method for multi-term fractional subdiffusion equation on polygonal meshes,  Nonlinear Dyn., 92 (2018) 595-612.

22. B. Lan, Z. Sheng, G. Yuan, A monotone finite volume scheme with second order accuracy for convection-diffusion equations on deformed meshes. Commun. Comput. Phys.  24(2018)1455-1476.

23. Z. Sheng, J. Yue, G. Yuan, A Parallel Finite Volume Scheme Preserving Positivity for Diffusion Equation on Distorted Meshes, Numer. Meth. Part. Diff. Equ., 33 (2017)2159-2178.

24. Q. Zhang, Z. Sheng, G. Yuan, A monotone finite volume scheme for diffusion equations on general non-conforming meshes, Appl. Math. Comput., 311(2017)300-313.

25. Q. Zhang, Z. Sheng, G. Yuan, A finite volume scheme preserving extremum principle for convection-diffusion equations on polygonal meshes, Int. J. Numer. Meth. Fluids, 84(2017)616-632.

26. X. Lai, Z. Sheng, and G. Yuan, Monotone finite volume scheme for three dimensional diffusion equation on tetrahedral meshes, Commun. Comput. Phys., 2017, 21(1), 162-181.

27. Z. Sheng, G. Yuan, A Cell-Centered Nonlinear Finite Volume Scheme Preserving Fully Positivity for Diffusion Equation, J. Sci. Comput., 2016, 68, 521-545.

28. Z. Sheng, G. Yuan, A new nonlinear finite volume scheme preserving positivity for diffusion equations, J. Comput. Phys., 2016, 315, 182-193.

29. Y. Chen, Y. Li, Z. Sheng, G. Yuan, Adaptive Bilinear Element Finite Volume Methods for Second-Order Elliptic Problems on Nonmatching Grids, J. Sci. Comput., 2015,64:130–150.

30. X. Lai, Z. Sheng, G. Yuan, A Finite Volume Scheme for Three-Dimensional Diffusion Equations. Commun. Comput. Phys., 2015, 18(3), 650-672.

31. Z. Sheng, M. Thiriet, F. Hecht, A high-order scheme for the incompressible Navier–Stokes equations with open boundary condition,Int. J. Numer. Meth. Fluids,2013,73(1):58-73.

32. 袁光伟,岳晶岩,盛志强,沈隆钧,非线性抛物型方程计算方法,中国科学:数学, 2013, 43(3)235-248.

33. Z. Sheng, G. Yuan, An improved monotone finite volume scheme for diffusion equation on polygonal meshes, J. Comput. Phys., 231(2012)3739-3754.

34. 袁光伟,盛志强,岳晶岩,扩散方程保正的有限体积格式,中国科学:数学, 42(9), 2012, 951-970.

35. S. Wang, G. Yuan, Y. Li, Z. Sheng, Discrete maximum principle based on repair technique for diamond type scheme of diffusion problems, Int. J. Numer. Meth. Fluids, 70(2012)1188-1205.

36. S. Wang, G. Yuan, Y. Li, Z. Sheng, A monotone finite volume scheme for advection–diffusion equations on distorted meshes, Int. J. Numer. Meth. Fluids, 69(2012)1283-1298.

37. Z. Sheng, G. Yuan, The finite volume scheme preserving extremum principle for diffusion equations on polygonal meshes, J. Comput. Phys., 230(2011) 2588-2604.

38. Z. Sheng, M. Thiriet, F. Hecht, An efficient numerical method for the equations of steady and unsteady flows of homogeneous incompressible Newtonian fluid, J. Comput. Phys., 230(2011) 551-571.

39. Z. Sheng, J. Yue, G. Yuan, Monotone finite volume schemes of nonequilibrium radiation diffusion equations on distorted meshes. SIAM J. Sci. Comput. 31 (2009), no. 4, 2915--2934.

40. 袁光伟,杭旭登,盛志强,岳晶岩,辐射扩散计算方法若干研究进展.计算物理,26 (2009), no.4.475-500.

41. 聂存云,舒适,盛志强,非结构四边形网格下的一类保对称有限体元格式,计算物理,26 (2009), no. 2, 175--183.

42. Z. Sheng, G. Yuan, A finite volume scheme for diffusion equations on distorted quadrilateral meshes. Transport Theory Statist. Phys. 37 (2008), no. 2-4, 171--207.

43. G. Yuan, Z. Sheng, Calculating the vertex unknowns of nine point scheme on quadrilateral meshes for diffusion equation, Sci. China Ser. A 51 (2008), no. 8, 1522--1536.

44. G. Yuan, Z. Sheng, Monotone finite volume schemes for diffusion equations on polygonal meshes. J. Comput. Phys. 227 (2008), no. 12, 6288--6312.

45. Z. Sheng, G. Yuan, A nine point scheme for the approximation of diffusion operators on distorted quadrilateral meshes. SIAM J. Sci. Comput. 30 (2008), no. 3, 1341--1361.

46. G. Yuan, Z. Sheng, Analysis of accuracy of a finite volume scheme for diffusion equations on distorted meshes. J. Comput. Phys. 224 (2007), no. 2, 1170--1189.

47. G. Yuan, X. Hang, Z. Sheng, Parallel Difference Schemes with Interface Extrapolation Terms for Quasi-linear Parabolic Systems. Science in China: Series A Mathematics, 50(2007), 253-275.

48. G. Yuan, Z. Sheng, X. Hang, The Unconditional Stability of Parallel Difference Schemes with Second Order Convergence for Nonlinear Parabolic System. J. Partial Diff. Eqs. 20(2007), 45-64.

49. Z. Sheng, G. Yuan, X. Hang, Unconditional Stability of Parallel Difference Schemes with Second Order Accuracy for Parabolic Equation. Appl. Math. Comput., 184(2007), 1015-1031.