科技队伍Technology Team

当前的位置:首页> 科技队伍>贾祖朋

计算数学教研室--贾祖朋

计算数学教研室-贾祖朋

所在单位:北京应用物理与计算数学研究所

导师职称:研究员,博士生导师

电子邮箱:zpjia@iapcm.ac.cn

招生专业:计算数学

研究方向:计算数学;计算流体力学





教育经历

1998∕09-2001∕07    中国科学院,计算数学与科学工程计算研究所, 博士,导师:余德浩研究员    

1987∕09-1990∕07    湘潭大学,数学系,硕士 ,导师:朱起定教授   

1983∕09-1987∕07    湘潭大学,数学系,学士

 

工作经历

2014∕10-至今       北京应用物理与计算数学研究所      研究员

2013∕12-2014 / 02     美国布朗大学应用数学系         研究访问学者

2001∕09-2014 / 09     北京应用物理与计算数学研究所      副研究员

1990∕09-1998∕08     湖南省武陵高等专科学校基础课部      讲师

 

研究方向及简介:

本研究方向的研究背景是:在内爆动力学、惯性约束聚变等国防和高新技术领域,需要针对极端条件(极高温、极高压)下的复杂多介质、多物理耦合问题,发展高置信度、高精度、高效的数值模拟方法和程序。涉及的主要问题有:爆轰驱动弹塑性流体的数值模拟、可压缩多介质流体极端大变形问题的数值模拟。目前感兴趣的研究课题有:多介质可压缩流体高精度交错型相容拉氏方法、高精度中心型拉氏方法;适合模拟强剪切流动的二维和三维多介质任意拉氏-欧拉方法(MMALE方法);二维和三维接触算法。团队成员长期从事武器物理数值模拟平台建设工作,在数值模拟方法研究和程序研制方面取得了一系列成果,具有较丰富的经验。其中部分成果属原创性成果,如一种高精度中心型间断有限元拉氏方法、基于MOF界面重构的三维MMALE方法、两种新的三维接触算法(离散精确匹配法、离散拉氏乘子法)。

 

 

代表性论文、专著:

[1] 贾祖朋,张树道,蔚喜军著,《多介质流体动力学计算方法》,信息与计算科学丛书,第63号,科学出版社,2014年6月。

[2]Liqi Liu, Zhijun Shen, Qinghong Zeng, Zupeng Jia, A high-order vertex-centered quasi-Lagrangian discontinuous Galerkin method for compressible Euler equations in two-dimensions, Computers & Fluids, CAF_104678,accepted,2020. (通讯作者)

[3] Fang Qing, Xijun Yu, Zupeng Jia, Meilan Qiu, Xiaolong Zhao, A high-order cell-centered discontinuous Galerkin

multi-material arbitrary Lagrangian-Eulerian method, Commun. Comput. Phys., accepted,2020. (通讯作者)

[4]王成,栗皓,李涛,贾祖朋,一种改进的多介质ALE动量重映算法,北京理工大学学报(自然科学版),40(4),452-460,2020.

[5] Fang Qing, Xijun Yu, Zupeng Jia, A robust MoF method applicable to severely deformed polygonal mesh, J. Comp. Phy.,377,162-182,2019.(通讯作者)

[6] 卿芳,蔚喜军,赵晓龙,邹世俊,贾祖朋,一种中心型间断有限元MMALE方法,空气动力学学报,39(1),25-36,2021.(通讯作者)

[7]郭少冬,贾祖朋,熊俊,周海兵,基于界面捕捉的三维多介质辐射流体力学方程MMALE计算方法,计算物理,35(2),127-137,2018.

[8] Xiang Chen, Xiong Zhang, Zupeng Jia, A robust and efficient polyhedron subdivision and intersection algorithm for three-dimensional MMALE remapping,  J. Comp. Phy., 338, 1-17, 2017

[9] Yutao Sun, Ming Yu, Zupeng Jia, Yu-Xin Ren, A cell-centered Lagrangian method based on local evolution Galerkin scheme for two-dimensional compressible flows, Computers & Fluids, 128, 65-76, 2016.

[10] Jia Zupeng, Gong Xiangfei, Zhang Shudao, Liu Jun, Two new three-dimensional contact  algorithms for staggered Lagrangian Hydrodynamics, J. Comp. Phy.,267,247-285,2014.

[11] Jia Zupeng, Liu Jun, Zhang Shudao, An effective integration of methods for second-order three-dimensional multi-material ALE method on unstructured hexahedral meshes using MOF interface reconstruction, J. Comp. Phy., 236(1), 513-562, 2013.

[12] Jia zupeng,Zhang shudao, A New High-Order Discontinuous Galerkin Spectral Finite Element Method for Lagrangian Gas Dynamics in Two Dimensions,J. Comp. Phy.,230,2496-2522, 2011.

[13] Li Zhenzhen, Yu Xijun, Zhu Jiang, Jia Zupeng,A Runge Kutta discontinuous Galerkin method for Lagrangian compressible Euler equations in two-dimensions,Commun. Comput. Phys.,15,1184-1206,2014.

[14] Li Zhenzhen, Yu Xijun, Jia Zupeng, The cell-centered discontinuous Galerkin method for Lagrangian compressible Euler equations in two-dimensions,Computers & Fluids, 96, 152-164, 2014.

[15] 贾祖朋,基于MOF 界面重构的中心型MMALE 方法,计算物理,33(5),523-538,2016。

[16] 贾祖朋,基于MOF 界面重构的多物质ALE 方法,计算物理,27(3), 353-360, 2010。

[17] 贾祖朋,蔚喜军,基于level set的Eulerian-Lagrangian耦合方法及其应用, 力学学报, 42(2), 177-182, 2010。

[18] Jia zupeng, Yu xijun, Zhao guiping, Explicit compatible finite element method for Lagrangian Hydrodynamics in three-dimensional Cartesian geometry, Chinese Journal of computational physics, 26(5), 671-678, 2009。

[19] 贾祖朋,蔚喜军,基于近似Riemann解的有限体积ALE方法,计算物理,24(5), 543-549, 2007。

[20] 孙宇涛, 贾祖朋,于明, 任玉新, 基于特征理论的二维可压缩流动的二阶拉氏算法, 计算物理,  29(6), 791-798, 2012.

[21] 余德浩,贾祖朋,二维Helmholtz方程外问题基于自然边界归化的非重叠型区域分解算法,计算数学,22:2(2000),227-240。

[22] 贾祖朋,邬吉明,余德浩,三维Helmholtz方程外问题的自然边界元与有限元耦合法,计算数学,23:3(2001),357-368。

[23] 贾祖朋,余德浩,二维Helmholtz方程外问题基于自然边界归化的重叠型区域分解算法,数值计算与计算机应用,2:4(2001),241-253。

[24] 余德浩,贾祖朋,椭圆边界上的自然积分算子及各向异性外问题的耦合算法,计算数学,24:3(2002),55-72。

[25] Jia Zupeng,Wu Jiming,Yu Dehao,The Coupled Natural Boundary-Finite Element Method for Solving 3-D Exterior Helmholtz Problem,Chinese J. Num. Math. & Appl.,23:4 (2001),79-93.

[26] Yu Dehao,Jia Zupeng,The Nonoverlapping DDM Based on Natural Boundary Reduction for 2-D Exterior Helmholtz Problem,Chinese J. Num. Math. & Appl.,22:3(2000),55-72.